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Abstract. In this document we summarize some of our recent work on the fi-
nite element approximation of Darcy’s problem. We start with some general
considerations about the problem setting, emphasizing the importance of the
functional framework. The Brinkman problem, including viscosity, is analyzed
next, in a format that permits to consider the limit cases of the pure Darcy and
Stokes problems. Then we move to the finite element approximation, which is
a stabilized finite element method that allows one to use arbitrary interpola-
tions for the variables. Improved results for Darcy’s problem obtained using
duality arguments are then presented. As a last topic, we study the imposition
of essential boundary conditions on non-matching methods used what we call
the linked-Lagrange multiplier method.

1 Darcy’s problem: primal and dual forms

Let Ω ⊂ Rd (d = 2, 3) the (bounded) domain where the problem is posed,
with boundary Γ = ∂Ω. Darcy’s problem consists of finding p : Ω −→ R and
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u : Ω −→ Rd such that

−1

k
u−∇p = f in Ω, (1)

∇ · u = g in Ω, (2)

where f and g are given functions and k > 0 is a physical parameter, here
assumed constant. The essential boundary conditions depend on the functional
setting of the problem described next. From now on, vector or tensor fields will
be represented by boldface characters.

The number of components of the unknown is n = d+1, which we arrange
as [u, p]. The differential operator is L([u, p]) = [− 1

ku − ∇p,∇ · u]. If we
test it against [v, q], we formally obtain a weak form of the problem, which
may change depending on the term we integrate by parts. In general, it can be
written as

〈L[u, p], [v, q]〉 = B([u, p], [v, q])− 〈Fn[u, p],D[v, q]〉Γ, (3)

where Fn is the normal trace of a certain operator F . Considering smooth
enough functions, we have

〈L([u, p], [v, q]〉

=

{
− 1

k (u,v)− (∇p,v)− (∇q,u) + 〈n · u, q〉Γ, (P)
− 1

k (u,v) + (p,∇ · v) + (q,∇ · u)− 〈n · v, p〉Γ. (D)

Let Q and V the spaces where p and u are defined, respectively. These depend
on whether expression (P) or expression (D) is used. The first leads to the
primal form of Darcy’s problem and the second to the dual form. The spaces
in play, the bilinear form B, the trace space Λ and the functional F whose
optimization leads to the Euler-Lagrange equations (1)-(2) are all given in Ta-
ble 1. The notation used in this table is standard; in particular,H(div; Ω) is the
spaces of vector fields in L2(Ω)d with divergence in L2(Ω). The right-hand-
side of the variational form of the problem is L([v, q]) = 〈f ,v〉+ 〈g, q〉. Here
and below, 〈·, ·〉 stands for the integral over Ω of the product of two functions,
whereas if the integral is over another domain ω a subscript is introduced; if
the functions belong to L2(Ω), the symbol used is (·, ·).

In view of the expression of the boundary operator D, the essential bound-
ary conditions that we shall consider are

p = p̄ on Γ for the primal form,

n · u = ūn on Γ for the dual form.
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Primal form Dual form
Q H1(Ω) L2(Ω)
V L2(Ω)d H(div; Ω)

B([u, p], [v, q]) − 1
k (u,v) − 1

k (u,v)
−(∇p,v)− (∇q,u) +(p,∇ · v) + (q,∇ · u)

F [u, p] −u p
D[u, p] p n · u

Λ H1/2(Γ) H−1/2(Γ)
F [u, p] − 1

2k‖u‖
2 − (∇p,u) − 1

2k‖u‖
2 + (p,∇ · u)

−〈f ,u〉 − 〈g, p〉 −〈f ,u〉 − 〈g, p〉

Table 1: Primal and dual forms of Darcy’s problem

2 Brinkman’s problem: a functional framework encompassing
limit cases

Let us consider now the Stokes-Darcy (or Brinkman) problem. Using the
terminology of fluid mechanics, it consists of finding a velocity u : Ω −→ Rd

and a pressure p : Ω −→ R such that

−ν∆u+
1

k
u+∇p = −f , (4)

∇ · u = g. (5)

For simplicity, as boundary conditions we will consider u = 0 if ν > 0 and
n · u = 0 if ν = 0.

Our objective is to develop a functional framework for the problem well be-
haved when ν → 0 (zero viscosity) and when 1

k → 0 (infinite permeability). In
the following section we will propose finite element methods to approximate
the problem with optimal stability and convergence properties using arbitrary
conforming approximations of velocity and pressure, without the difficulty in-
herent to inf-sup stable elements for both the Stokes and the Darcy problems.
The results to be presented can be found in [1].

The variational formulation of (4)-(5) consists in finding a velocity-pressure
pair [u, p] such that

B([u, p], [v, q]) = L([v, q]),

for all test functions [v, q], where the bilinear form B and the linear form L
are now defined by

B([u, p], [v, q]) = ν(∇u,∇v) +
1

k
(u,v)− (p,∇ · v) + (q,∇ · u),

L([v, q]) = −〈f ,v〉+ 〈g, q〉.
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As shown in the previous section, if ν = 0, that is, for the Darcy prob-
lem, the problem can be posed in the primal and the dual forms. The latter
corresponds to the singular limit ν → 0, where it is natural to require that
f ∈ H0(div,Ω)′, g ∈ L2(Ω). The primal form is just a mixed formulation of
Poisson’s problem and the data need to be f ∈ L2(Ω)d, g ∈ H−1(Ω).

Let us introduce the operator

Lu := −ν∆u+
1

k
u,

and the associated graph norm

‖u‖2L := ν‖∇u‖2 +
1

k
‖u‖2.

Let VL be obtained as the closure of C∞0 (Ω)d with respect to this norm. Its
dual space V ′L is endowed with the norm

‖u‖L′ := sup
v∈VL

〈u,v〉
‖v‖L

.

Obviously, VL = H1
0 (Ω)d, V ′L = H−1(Ω)d if ν > 0 and VL = V ′L = L2(Ω)d

if ν = 0.
A key ingredient is the introduction of a characteristic length scale L0,

which will play a key role in the Darcy problem. The reason is the need to
control both u and ∇ · u to obtain stability in H(div,Ω).

Let V be the closure of C∞0 (Ω)d with respect to the norm given by ‖v‖L+
k−1/2L0‖∇ · v‖ and Q the closure of C∞(Ω)/R with respect to the norm
(ν+k−1L2

0)−1/2‖q‖+‖∇q‖L′ . The pair V ×Q reduces toH1
0 (Ω)d×L2(Ω)/R

when ν > 0 and to H0(div,Ω)×H1(Ω)/R when ν = 0. On V ×Q we define

|||[v, q]|||2 := ‖v‖2L +
1

k
L2

0‖∇ · v‖2 +
1

ν + k−1L2
0

‖q‖2 + ‖∇q‖2L′ , (6)

which is the finest norm in which the problem is well posed.
Theorem 1 [Stability of the continuous problem] There exists a constant C
such that for all [u, p] ∈ V ×Q there exists [v, q] ∈ VL × L2(Ω) for which

B([u, p], [v, q]) ≥ C|||[u, p]||| ‖[v, q]‖VL×L2(Ω),

i.e., the problem is well-posed in the norm (6).
The working norm is optimal. Observe that

|||[u, p]|||2 = ν‖∇u‖2 +
1

ν
‖p‖2 +

1

ν
‖∇p‖2−1 when 1

k = 0,

|||[u, p]|||2 =
1

k
‖u‖2 +

1

k
L2

0‖∇ · u‖2 +
k

L2
0

‖p‖2 + k‖∇p‖2 when ν = 0.
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3 Brinkman’s problem: stabilized finite element approximation

Once the functional framework for the Brinkman problem has been pre-
sented, let us introduce the finite element approximation we propose using
stabilized finite element methods. What follows is a summary of [1, 3].

The key ingredients of the method we will present are a two scale decom-
position of the velocity and the pressure into finite element components and
subscales within the variational multiscale framework (VMS), a proper scaling
of the problem, which requires the introduction of a length scale and a closed
form expression for the subscales based on an approximate Fourier analysis of
the problem (not elaborated here). As a result, our proposal consists of two
stabilized finite element methods, with similar stability and convergence prop-
erties, namely, optimal stability and optimal convergence in the appropriate
functional setting of the problem.

Let Vh and Qh be the finite element spaces to approximate the velocity and
the pressure, constructed from a finite element partition {K}. The methods to
be analyzed can be written as follows: find [uh, ph] ∈ Vh ×Qh such that

Bs([uh, ph], [vh, qh]) = Ls([vh, qh]), (7)

for all [vh, qh] ∈ Vh ×Qh.
The first method we consider is the Algebraic subgrid scale (ASGS) method,

in which the forms Bs and Ls in (7) are given by:

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh])

+τp
∑
K

〈∇ · uh,∇ · vh〉K

+τu
∑
K

〈
−ν∆uh + k−1uh +∇ph, ν∆vh − k−1vh +∇qh

〉
K

+τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ nqh + ν∂nvh ]] 〉E ,

where [[ · ]] is the jump over the edges E and

Ls([vh, qh]) = L([vh, qh]) + τp
∑
K

〈g,∇ · vh〉K

+τu
∑
K

〈
−f , ν∆vh − k−1vh +∇qh

〉
K
.

The formulation depends on the stabilization parameters τp, τu and τf , that we
compute as

τp = c1ν + cp2
`2p
k
, τu =

(
c1ν + cu2

`2u
k

)−1
h2, τf =

τu
h
, (8)
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with c1, cp2 and cu2 algorithmic constants.
The length scales `u and `p, which can be either taken as L0, h or (L0h)1/2,

appear when introducing scaling coefficients µu and µp such that µu|f |2 +
µp|g|2 is dimensionally consistent. Using the approximate Fourier analysis,
the stabilization parameters are found, now depending on µu and µp. In turn,
these scaling coefficients depend on a length scale of the problem that may be
taken as L0 or h.

The second method we consider is the Orthogonal subscale stabilization
(OSS) method. In this case, the bilinear form Bs and the linear form Ls in (7)
for the OSS method are given by

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh])

+τp
∑
K

〈
P⊥(∇ · uh), P⊥(∇ · vh)

〉
K

+τu
∑
K

〈
P⊥(−νvh +∇ph), P⊥(ν∆vh +∇qh)

〉
K

+τf
∑
E

〈 [[ nph − ν∂nuh ]] , [[ nqh + ν∂nvh ]] 〉E ,

Ls([vh, qh]) = L([vh, qh]).

The stabilization parameters are the same as for the ASGS method.
Both for the ASGS and the OSS methods, let us define the mesh dependent

norm

|||[vh, qh]|||2h = ‖vh‖2L +
1

k
`2p‖∇ · vh‖2 +

1

ν + k−1L2
0

‖qh‖2

+
h2

ν + k−1`2u

∑
K

‖∇qh‖2K +
h

ν + k−1`2u

∑
E

‖ [[ nqh ]]‖2E . (9)

If εi(v) is the interpolation error of function v in the norm of H i(Ω), let us
define

E(h)2 = (ν + k−1`2p)(h
−2ε2

0(u) + ε2
1(u)) + k−1ε2

0(u)

+
h2

ν + k−1`2u
(h−2ε2

0(p) + ε2
1(p)). (10)

Theorem 2 [Stability of the stabilized formulations] Suppose that the constants
c1 and cu2 are large enough. Then, there exists a constant C such that for all
[uh, ph] there exists [vh, qh] such that

Bs([uh, ph], [vh, qh]) ≥ C|||[uh, ph]|||h|||[vh, qh]|||h,
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i.e., the discrete problem is stable in the norm (9).
Let us compare the working norms of the continuous and the discrete prob-

lems, for simplicity in the case of continuous pressure interpolations:

|||[v, q]|||2 = ‖v‖2L +
1

ν + k−1L2
0

‖q‖2 +
1

k
L2

0‖∇ · v‖2 + ‖∇q‖2L′ ,

|||[vh, qh]|||2h = ‖vh‖2L +
1

ν + k−1L2
0

‖qh‖2

+
1

k
`2p‖∇ · vh‖2 +

h2

ν + k−1`2u
‖∇qh‖2.

If . stands for ≤ up to constants, we have:
Theorem 3 [Convergence of the stabilized formulations] Let [u, p] be the so-
lution of the continuous problem and [uh, ph] the solution of the discrete one.
Suppose that `p ≥ `u and the assumptions of the previous theorem hold. Then

|||[u− uh, p− ph]|||h . E(h),

i.e., the finite element solution converges in the norm (9) with error func-
tion (10).

4 Optimal estimates for Darcy’s problem using stabilized finite el-
ement methods

Let us give now error estimates for the Darcy problem. The previous re-
sults also hold in the case ν = 0, so that we already have results in natural
norms. However, we will show that it is possible to improve them using du-
ality arguments. Although we shall not treat them, the same results can be
obtained using discontinuous approximations for both the pressure and the ve-
locity (see [2]).

Let eu and ep be the finite element errors in velocity and pressure, respec-
tively. The estimates obtained before in the case ν = 0 can be written as

1

k
‖eu‖2 +

1

k
`2p‖∇ · eu‖2 +

k

L2
0

‖ep‖2

+
kh2

`2u

∑
K

‖∇ep‖2K +
kh

`2u

∑
E

‖ [[ nep ]]‖2E

.
1

k
`2pε

2
1(u) +

1

k
ε2

0(u) +
k

`2u
ε2

0(p)

.
1

k
`2ph

2k‖u‖2k+1 +
1

k
h2k+2‖u‖2k+1 +

k

`2u
h2l+2‖p‖2l+1,
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where a subscriptm in ‖ ·‖ denotes theHm norm. In order to obtain improved
error estimates in L2(Ω) for eu and ep we need to assume that the adjoint
problem satisfies the usual elliptic regularity assumption.

The bilinear form of the problem using the ASGS formulation can then be
written as

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh]) +
`2p
k

∑
K

〈∇ · uh,∇ · vh〉K

+
h2

k`2u

∑
K

〈uh + k∇ph,−vh + k∇qh〉K +
kh

`2u

∑
E

〈 [[ nph ]] , [[ nqh ]] 〉E ,

and for the OSS method

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh])

+
`2

k

∑
K

〈
∇ · vh, P⊥(∇ · uh)

〉
K

+
kh2

`2

∑
K

〈
∇qh, P⊥(∇ph)

〉
K

+
kh

`2

∑
E

〈 [[ nph ]] , [[ nqh ]] 〉E ,

where `u = `p = ` has been assumed.

Theorem 4 [Optimal convergence for Darcy’s problem] There holds

‖eu‖2 .
(
h2 +

`4p
L2

0

+ h2
`4p
`4u

)
‖∇ · eu‖2 + k2

(h4

`4u
+
h2

L2
0

)∑
K

‖∇ep‖2K ,

‖ep‖2 .
1

k2
`4p‖∇ · eu‖2 + h2

∑
K

‖∇ep‖2K .

The accuracy of the velocity and the pressure implied by this result is shown
in Table 2 in terms of the length scale chosen. The important point is that
the choice of the length scales determines the functional setting in which we
converge, either that of the primal form or of the dual form of Darcy’s problem.

5 Weak imposition of essential boundary conditions

Let us describe now a methodology that we have proposed to impose in a
weak way essential boundary conditions for elliptic problems and, in particu-
lar, for the Darcy problem. The formulation is applicable if the finite element
mesh covers a domain Ωh which does not match Ω, i.e., Γ is interior to Ωh.
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Method
`p, `u = h, h L0

1/2h1/2, L0
1/2h1/2 L0, L0

‖eu‖ hk+1 + hl hk+1/2 + hl+1/2 hk + hl+1

Original Suboptimal Quasi-optimal Suboptimal
‖eu‖ hk+1 + hl hk+1 + hl+1 hk + hl+1

Via duality Suboptimal Optimal Suboptimal
‖ep‖ hk+1 + hl hk+1/2 + hl+1/2 hk + hl+1

Original Suboptimal Quasi-optimal Suboptimal
‖ep‖ hk+2 + hl+1 hk+1 + hl+1 hk + hl+1

Via duality Optimal Optimal Suboptimal
‖∇ · eu‖ hk + hl−1 hk + hl hk + hl+1

Suboptimal Optimal Optimal
‖∇ep‖ hk+1 + hl hk + hl hk−1 + hl

Optimal Optimal Suboptimal
k, l Optimal k + 1 = l k = l k = l + 1

Table 2: Accuracy of the stabilized formulations for Darcy’s problem

The method has been proposed in a preliminary version in [5], it was general-
ized in [6] and the full numerical analysis can be found in [4]. The reader is
referred to these articles and references therein for details.

The formulation we proposed is termed Linked Lagrange Multiplier (LLM)
method. The idea can be explained starting from the classical Lagrange Mul-
tiplier method to impose boundary conditions. Instead of considering the mul-
tiplier as a variable defined on the boundary, we consider it as the trace of a
certain field defined on the whole domain, and impose that this field be equal
to a certain operator applied to the unknowns of the problem in a least-squares
sense. In the particular case of Darcy’s problem, the method consists in the
optimization of the functional

Ĝ([uh, ph,σh])

=

{
F ([uh, ph])− 〈σn,h, ph − p̄〉Γ − 1

2N0k
‖σh + uh‖2, (P)

F ([uh, ph])− 〈σh,n · uh − ūn〉Γ − k
2N0L2

0
‖σh − ph‖2, (D)

over Vh×Qh×Σh, corresponding to the primal (P) and the dual (D) forms of
the problem. Note that in the first case σh is a vector field, with the physical
meaning of a flux, and σn,h is its normal trace on Γ, whereas in the second
case σh is a scalar, with the same physical meaning as the primal variable.
The factors k and L2

0 in the least-squares terms have been introduced to leave
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only one dimensionless parameter N0 in the formulation. The space for the
new variable, Σh, can be chosen to be made of discontinuous functions, thus
allowing the condensation of this new unknown at the element level.

Let us start with the primal form. It reads: find [uh, ph,σh] ∈ Vh×Qh×Σh

such that

− 1

k
(uh,vh)− (∇ph,vh)− 1

N0k
(vh,σh + uh) = 〈f ,vh〉, (11)

− (∇qh,uh)− 〈σn,h, qh〉Γ = 〈g, qh〉, (12)

− 〈τn,h, ph〉Γ −
1

N0k
(τ h,σh + uh) = −〈τn,h, p̄〉Γ, (13)

for all vh ∈ Vh, qh ∈ Qh and τ h ∈ Σh. The bilinear form associated to
problem (11)-(13) is given by

BDP([uh, ph,σh], [vh, qh, τ h])

= −1

k
(uh,vh)− (∇ph,vh)− (∇qh,uh)

− 〈σn,h, qh〉Γ − 〈τn,h, uh〉Γ −
1

N0k
(τ h + vh,σh + uh). (14)

We can prove that [4]:
Theorem 5 [Stability and convergence for the primal problem] Suppose that
Σh is made of discontinuous functions, that N0 > 1 and that the pair Qh × Vh
is inf-sup stable. Then, the bilinear form in (14) is stable in the norm

|||[u, p,σ]|||2DP :=
1

k
‖u‖2 + k‖∇p‖2 +

k

h
‖p‖2Γ +

1

k
‖σ‖2. (15)

Moreover, if the solution of the continuous problem u = [u, p,−u] is such
that n · u is bounded in L2(Γ), the solution uh = [uh, ph,σh] of problem
(11)-(13) converges in the norm (15) with the error function

EDP(u, h) = k−1/2‖u− ũh‖+ k1/2‖∇p−∇p̃h‖
+ k−1/2‖u+ σ̃h‖+ k−1/2h1/2‖n · u+ n · σ̃h‖Γ
+ k1/2h−1/2‖p− p̃h‖Γ (16)

for any [ũh, p̃h, σ̃h] ∈ Vh ×Qh × Σh.
It is seen from (16) that the error estimate obtained is optimal. In particular,

if Qh is constructed with elements of order pQ, Vh with elements of order pV
and Σh with (discontinuous) elements of order pΣ, the error in the norm (15)
is of order min{pQ, pV + 1, pΣ + 1}.
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Let us move to the dual form of Darcy’s problem. The method we propose
reads: find [uh, ph, σh] ∈ Vh ×Qh × Σh such that

− 1

k
(uh,vh) + (ph,∇ · vh)− 〈σh,n · vh〉Γ = 〈f ,vh〉, (17)

(qh,∇ · uh)− k

N0L2
0

(qh, σh − ph) = 〈g, qh〉, (18)

− 〈τh,n · uh〉Γ +
k

N0L2
0

(τh, σh − ph) = −〈τh, ūn〉Γ, (19)

for all vh ∈ Vh, qh ∈ Qh and τh ∈ Σh. This is the LLM for the dual form
of Darcy’s problem. As for the primal version, the linked Lagrange multi-
plier σh can be condensed at the element level from (19) if its interpolation is
discontinuous.

The bilinear form associated to problem (17)-(19) is given by

BDD([uh, ph, σh], [vh, qh, τh])

= −1

k
(uh,vh) + (ph,∇ · vh) + (qh,∇ · uh)

− 〈τh,n · uh〉Γ − 〈σh,n · vh〉Γ +
k

N0L2
0

(τh − qh, σh − ph). (20)

The stability and convergence result for the problem we are considering is the
following [4]:
Theorem 6 [Stability and convergence for the dual problem] Suppose that Σh

is made of discontinuous functions of order pΣ ≥ pV , thatN0 > 1 and that the
inf-sup conditions between Qh and Vh hold. Then, the bilinear form in (20) is
stable in the norm

|||[u, p, σ]|||2DD :=
1

k
‖u‖2 +

L2
0

k
‖∇ · u‖2 +

L2
0

kh
‖n · u‖2Γ

+
k

L2
0

‖p‖2 +
k

L2
0

‖σ‖2. (21)

Moreover, if the solution of the continuous problem is u = [u, p, p], the solu-
tion uh = [uh, ph, σh] of problem (17)-(19) converges in the norm (21) with
the error function

EDD(u, h) = k−1/2‖u− ũh‖+ k−1/2L0‖∇ · u−∇ · ũh‖
+ k−1/2h−1/2L0‖n · u− n · ũh‖Γ + k1/2L−1

0 ‖p− p̃h‖
+ k1/2L−1

0 ‖p− σ̃h‖+ k1/2h1/2L−1
0 ‖p− p̃h‖Γ (22)
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for any [ũh, p̃h, σ̃h] ∈ Vh ×Qh × Σh.
As for the primal problem, it is observed from (22) that the error estimate

obtained is optimal.
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